Matroid Intersection
نویسنده
چکیده
Last lecture we covered matroid intersection, and defined matroid union. In this lecture we review the definitions of matroid intersection, and then show that the matroid intersection polytope is TDI. This is Chapter 41 in Schrijver’s book. Next we review matroid union, and show that unlike matroid intersection, the union of two matroids is again a matroid. This material is largely contained in Chapter 42 in Schrijver’s book. We leave testing independence in the union matroid for the next lecture.
منابع مشابه
Parallel Complexity for Matroid Intersection and Matroid Parity Problems
Let two linear matroids have the same rank in matroid intersection. A maximum linear matroid intersection (maximum linear matroid parity set) is called a basic matroid intersection (basic matroid parity set), if its size is the rank of the matroid. We present that enumerating all basic matroid intersections (basic matroid parity sets) is in NC, provided that there are polynomial bounded basic m...
متن کاملThe Complexity of Maximum Matroid-Greedoid Intersection
The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown NP -hard by expressing the satisfiability of boolean formulas in 3-conjunctive normal form as such an intersection. Also the corresponding approximation problem is shown NP -hard for certain approximation performance bounds. This is in contrast with the maximum matroid-matroid intersection ...
متن کاملExact and Approximation Algorithms for Weighted Matroid Intersection
In this paper, we propose new exact and approximation algorithms for the weighted matroid intersection problem. Our exact algorithm is faster than previous algorithms when the largest weight is relatively small. Our approximation algorithm delivers a (1 − ε)-approximate solution with a running time significantly faster than most known exact algorithms. The core of our algorithms is a decomposit...
متن کاملA Fast Approximation for Maximum Weight Matroid Intersection
We present an approximation algorithm for the maximum weight matroid intersection problem in the independence oracle model. Given two matroids defined over a common ground set N of n elements, let k be the rank of the matroid intersection and let Q denote the cost of an independence query for either matroid. An exact algorithm for finding a maximum cardinality independent set (the unweighted ca...
متن کاملOn the intersection of infinite matroids
We show that the infinite matroid intersection conjecture of NashWilliams implies the infinite Menger theorem proved recently by Aharoni and Berger. We prove that this conjecture is true whenever one matroid is nearly finitary and the second is the dual of a nearly finitary matroid, where the nearly finitary matroids form a superclass of the finitary matroids. In particular, this proves the inf...
متن کامل